ПОДГОТОВКА К АТТЕСТАЦИИ МЕТОДИК КОЛИЧЕСТВЕННОГО химического анализа Аналитический контроль объекта. Термины и определения

Принцип анализа вещества – физическое явление или эффект, положенные в основу метода анализа вещества.

Метод анализа вещества – способ получения информации о химическом составе вещества на основе одного или нескольких принципов анализа.

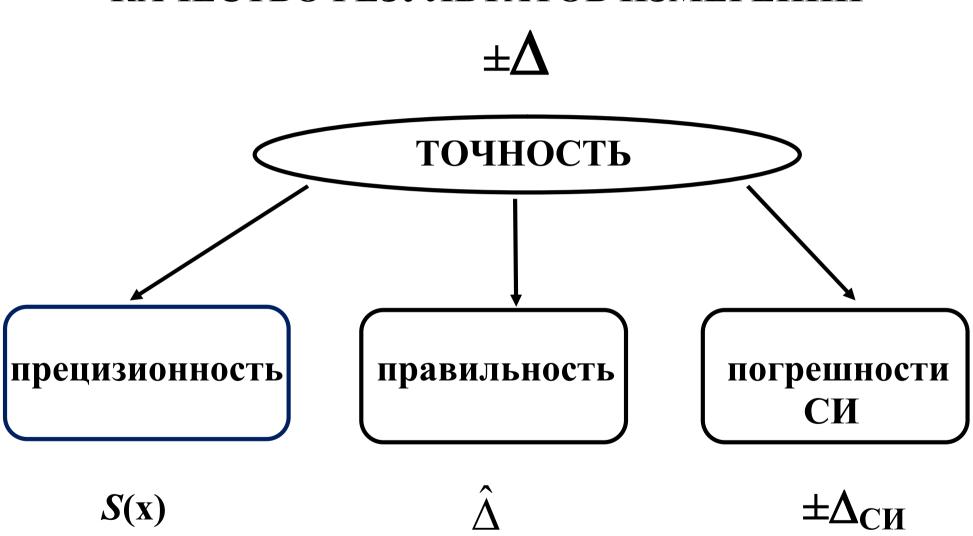
Методика анализа вещества – документированная совокупность процедур и правил, выполнение которых обеспечивает получение результата анализа вещества с установленными характеристиками погрешности.

Методика (метод) измерений – совокупность конкретно описанных процедур, выполнение которых обеспечивает получение результатов измерений с установленными показателями точности ГОСТ Р 8.563-2009

ЭТАПЫ АТТЕСТАЦИИ МЕТОДИКИ

1 Разработка методики измерений (задача исполнителя)

Осуществляют на основе исходных данных, которые могут быть приведены в техническом задании и других документах.


- 1.1 Формулирование измерительной задачи и описание измеряемых величин
- 1.2 Выбор метода и средств измерений
- 1.3 Установление последовательности и содержания процедур при подготовке и выполнении измерений
- 1.4 Экспериментальное опробование методики (проведение измерений для их статистической обработки)
- 1.5 Пропись методики

- 2 Метрологическое исследование методики (задача исполнителя и ответственного специалиста-метролога отдела)
- 2.1 Обработка промежуточных результатов измерений, вычисление окончательных
 - 2.2 Анализ выборок результатов измерений
 - 2.3 Оценка характеристик прецизионности, правильности и точности
 - 2.4 Оценка критериев контроля качества результатов измерений

3 Аттестация методик (задача юридического лица)

Аттестацию методик (методов) измерений, относящихся к сфере государственного регулирования обеспечения единства измерений, проводят аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели – Центр «Сертимет» УрО РАН

КАЧЕСТВО РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

1 СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА, МАТЕРИАЛЫ, РЕАКТИВЫ

Средства	измерений			
Фотометр фотоэлектрический КФК-3	ТУ 3-3.2164-89	Приложение А		4
Весы лабораторные электронные Excellence Plus XP 204 (компания METTLER TOLEDO)	ГОСТ 24104	Прил	Приложение Б	
Мерные колбы: 2-100-2	ГОСТ 1770	±Δ=	0,20 см ³	
Электронный дозатор Biohit eLINE 100-5000 µl	Номер в каталоге	V , μΙ	δ _c , %	S, %
	730100	5000	0,50	0,15
Вспомогательн	ные устройства			
Истиратель лабораторный дисковый	ТУ 41-08-042			
Сушильный шкаф электрический круглый	ТУ 64-1-1411			
Лабораторная муфельная печь серий МИМП-10	ТУ 3442.002.24662585-			
Тигли никелевые.	Государственное научно-производственное			
Никель марки Н-1У вакуумной выплавки	предприятие «Рубин» НАН Украины			
Магнитная мешалка	Лабораторные приборы Санкт- Петербурга			
Якорь для магнитной мешалки	ГОСТ 25336-82			
Воронки полипропиленовые	ТУ 229-018-23050963			
Стаканы полипропиленовые без шкалы	ТУ 229-018-23050963			
Воронка лабораторная В-75	ГОСТ 25336-82			
Лопаточка для весов, конический	Bochem Laborbedarf			
Шпатель двухсторонний плоский	Bochem Laborbedarf			
Эксикатор исполнения 2	ГОСТ 6371-73			
Палочка стеклянная	Минимед / Каталог / Лабораторная посуда			
Ступка с пестиком	ТУ 22-3479-75			

Реактивы		
Гидроокись натрия, чда	ГОСТ 4328-77	
Серная кислота, осч	FOCT 14262-78	
Аммоний молибденовокислый 4-водный, хч	FOCT 3765-78	
β-динитрофенол, 2.4- динитрофенол, индикатор, чда	ТУ 6-09-1883-72	
Аскорбиновая кислота, хч	ΓΟCT 4815-76	
Лимонная кислота моногидрат	ГОСТ 908-2004	
Соляная кислота (водный раствор хлористого водорода), хч	ГОСТ 3118-77	
Вода для лабораторного анализа	ГОСТ Р 52501	
Кальций хлористый прокаленный	ГОСТ 450-77	

Реактивы			
Название по ГОСТ	Правила номенклатуры неорганических соединений, утвержденные Международным союзом теоретической и прикладной химии — ИЮПАК (IUPAC).		
Гидроокись натрия, чда	Гидроксид натрия, чда		
Аммоний молибденовокислый 4-водный, хч	Тетрагидрат гептамолибдата аммония, хч		
Соляная кислота, хч	Хлороводородная кислота, хч		
Кальций хлористый прокаленный	Хлорид кальция прокаленный		

ОБРАЗЦЫ ДЛЯ ОЦЕНКИ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК МЕТОДИКИ

1 Стандартные образцы (CO) — образцы вещества (материала) с установленными по результатам испытаний значениями одной и более величин, характеризующих состав или свойство этого вещества (материала).

2 Образцы, идентичные по составу и структуре с объектами измерений, включенными в область применения методики.

ОБРАЗЦЫ ДЛЯ ОЦЕНКИ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК МЕТОДИКИ

			Аттестованные характеристик		
	оо нд		Массовая доля кремния (IV)	Абсолютная по- грешность	
			ω(Si), %	±∆, % (<i>P</i> = 0,95)	
1	Зерно пшеницы				
2	Стандартный образец со- става листа березы	ЛБ-1 ГСО 8923-2007	0,40	0,07	
3	Стандартный образец со- става травосмеси	Тр-1 ГСО 8922-2007	0,55	0,04	
4	Зерно овса				
5	Стандартный образец со- става элодеи канадской	ЭК-1 ГСО 8921-2007	1,1	0,2	
6	Хвощ				

МЕТРОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ МЕТОДИКИ ПРИ ОТСУТСТВИИ СТАНДАРТНЫХ ОБРАЗЦОВ

1 Образцы, идентичные по составу и структуре с объектами измерений, включенных в область применения методики.

2 Стандартные образцы, используемые для градуиров-ки средств измерений.

Оценена правильность измерения компонента в образце, обусловленная только методикой анализа раствора, погрешности процедуры извлечения компонента из твердого образца в раствор не учтены.

Результаты анализа твердых объектов гарантируют точность измерений содержания форм компонента образца, перешедших в раствор в условиях, строго регламентированных методикой.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

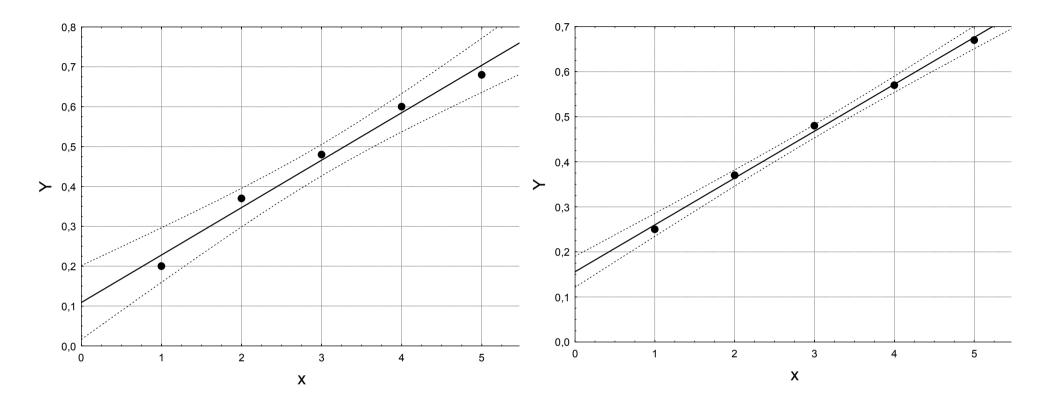
1 ГРАДУИРОВКА СРЕДСТВ ИЗМЕРЕНИЙ Оценка параметров градуировочной функции $Y = Y_o + Kx$

1.1 Приготовление аттестованных смесей состава водных растворов определяемого компонента, обусловленные используемыми средствами измерений

AC	Масса крем- ния (IV) <i>m</i> (Si), мг	Границы интервала абсолютной погрешности, ±∆, мг (<i>P</i> = 0,95)	Границы интервала относительной погрешности, ±δ, % (<i>P</i> = 0,95)
1	0,00250	0,00005	2,0
2	0,00500	0,00009	1,8
3	0,0100	0,0002	1,7
4	0,0150	0,0002	1,6
5	0,0200	0,0003	1,5

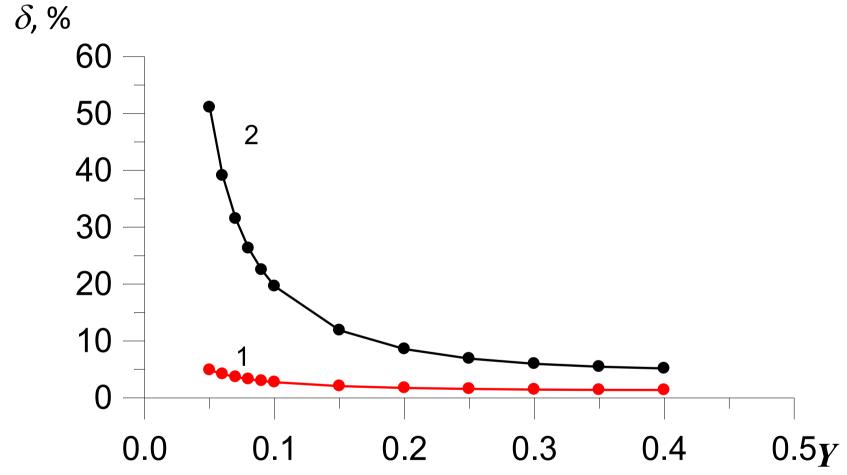
Средства измерений

Наименование	Обозна- чение	Вместимость средств измерений, <i>V</i> , см ³	-	рактер огрешн	ности
Колбы мерные	2-100-2	100	±	△ = 0,2	0 см ³
Электронный	100-	5	V , μ I	δ _c , %	S, %
дозатор	5000 μ l		5000	0,50	0,15
Biohit eLINE			2500	0,80	0,20
			500	1,00	0,40

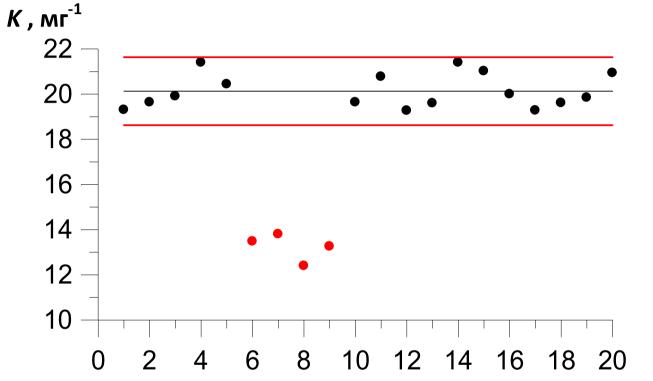

Стандартный образец состава раствора ионов кремния МСО 0130:2000 (ГСОРМ-5 2298-8911)

Массовая концентрация кремния (IV): ρ (Si) = 1,00 мг/см³.

Относительная погрешность (P = 0.95): $\pm \delta = 0.5$ %.


1.2 ИЗМЕРЕНИЕ ИНТЕНСИВНОСТИ АНАЛИТИЧЕСКОГО СИГНАЛА

Y :	$= Y_0 + I$	Kx		1	2
X	Y ₁	Y_2	Y_o	0.123	0.156
1,00	0,20	0,25	$S(Y_o)$	0.109	0.011
2,00	0,37	0,37	$p(Y_o)$	0.029	0.0007
3,00	0,48	0,48	K , $M\Gamma^{-1}$	0.1190	0.1040
4,00	0,60	0,57	$S_r(K)$, $M\Gamma^{-1}$	0.0088	0.0033
5,00	0,68	0,67	\mathcal{S}_o	0.0278	0.0103
			\boldsymbol{R}	0.9919	0.9985


$$R = 0.9919$$

$$R = 0.9983$$

Зависимость относительной погрешности измеренного значения x, обусловленная СИ (фотометром) (1), градуировочной зависимостью с коэффициентами корреляции: $r_1 = 0,9983$ (2)

1.3 Контроль правильности и стабильности градуировочной функции

Значения коэффициентов градуировочной функции $A = A_o + Km(Si)$), где m(Si) – масса кремния (IV) в 100,00 см³ раствора гетерополисини (I = 5 см, $\lambda = 700$ нм), измеренные в условиях воспроизводимости $\overline{K} = 20,3$ мг $^{-1}$, $S_R(K) = 0,8$ мг $^{-1}$,

$$\pm \delta = 8 \%$$

$$\pm \delta_{M} \ge 24 \%_{0}$$

2 АНАЛИЗ ОБРАЗЦОВ, ИСПОЛЬЗУЕМЫХ ДЛЯ ОЦЕНКИ МЕТРОЛОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК МЕТОДИКИ

Измеренные значения массовой доли кремния (IV), ω (Si(IV)), %

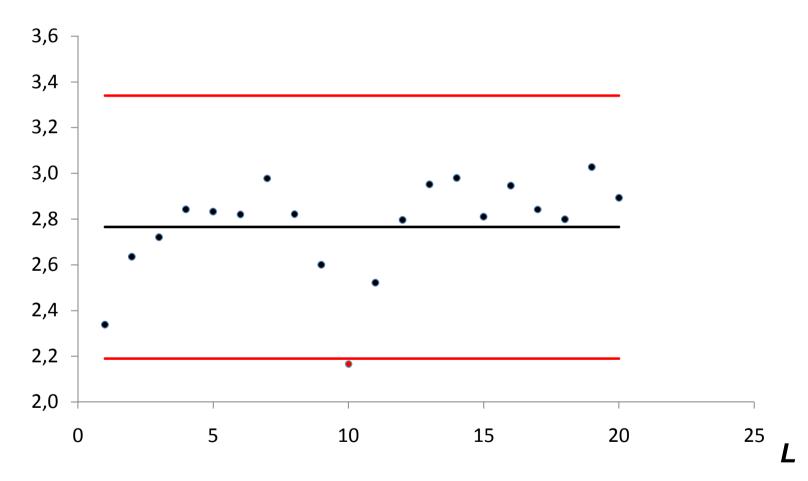
Обра- зец	1	2	3	4	5	6	7
	0,0290	0,2381	0,4111	0,595	0,559	1,178	2,165
	0,0348	0,2205	0,4289	0,553	0,554	1,152	2,337
	0,0320	0,2712	0,3914	0,478	0,575	1,242	2,634
	0,0373	0,2370	0,3530	0,605	0,525	1,162	2,720
	0,0286	0,2990	0,4170	0,571	0,616	1,082	2,841
	0,0331	0,2371	0,4140	0,457	0,617	1,040	2,832
	0,0304	0,2804	0,3750	0,606	0,674	1,056	2,819
	0,0409	0,2528	0,3760	0,572	0,598	1,057	2,978
	0,0365	0,2040	0,3570	0,557	0,664	1,161	2,821
	0,0338	0,2061	0,3820	0,511	0,656	1,114	2,599
x_l	0,0320	0,2275	0,3957	0,515	0,564	1,069	2,521
	0,0383	0,2784	0,3960	0,559	0,590	1,131	2,795
	0,0286	0,2340	0,3980	0,506	0,604	1,140	2,951
	0,0335	0,2205	0,4020	0,496	0,566	1,136	2,979
	0,0310	0,2971	0,3870	0,518	0,595	1,090	2,809
	0,0413	0,2920	0,4010	0,511	0,710	1,107	2,945
		0,2856	0,4280	0,493	0,693	1,082	2,842
		0,2619	0,4050	0,559	0,673	1,161	2,799
		0,2448	0,3900	0,518	0,643	1,010	3,027
			0,3930	0,509	0,617		2,893
				0,5731	0,663		

МЕТРОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

```
- аттестованное значение массовой доли кремния (IV), %
 X_{0}
 X_I
        измеренное значение массовой доли кремния (IV)в условиях воспроизводимости, %
      - число измерений в условиях воспроизводимости
      - среднее измеренных значений массовой доли кремния (IV), %
      - медиана, %
 X_{M}
      – стандартное отклонение, %

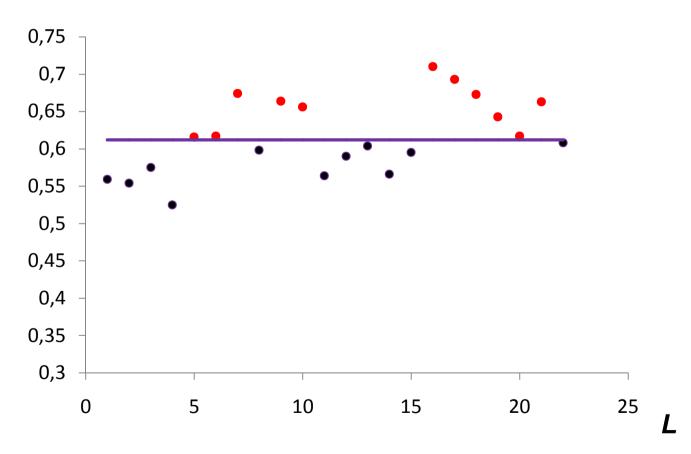
    приведенное стандартное отклонение, %

      - относительное стандартное отклонение (коэффициент вариации), %

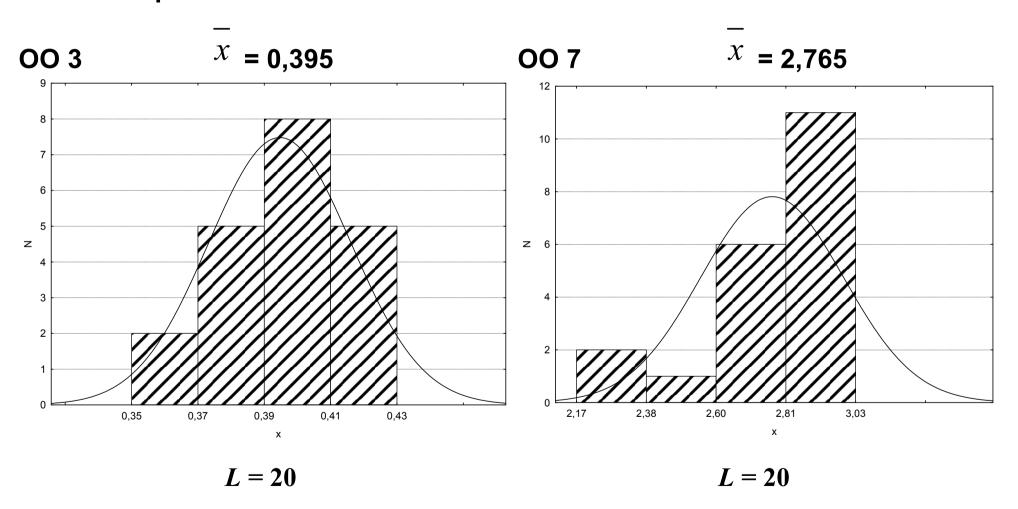

    коэффициент Граббса

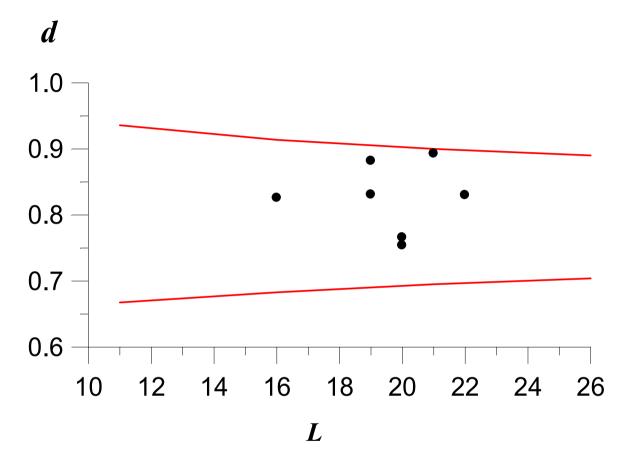
      – минимальное допустимое измеренное значение массовой доли кремния (IV), %
X_{min}
      - максимальное допустимое измеренное значение массовой доли кремния (IV), %
      - минимальное измеренное значение массовой доли кремния (IV), %
х <sub>max</sub> – максимальное измеренное значение массовой доли кремния (IV), %
  d
      - критерий нормального распределения результатов измерений
```

2.1 Анализ выборок результатов измерений

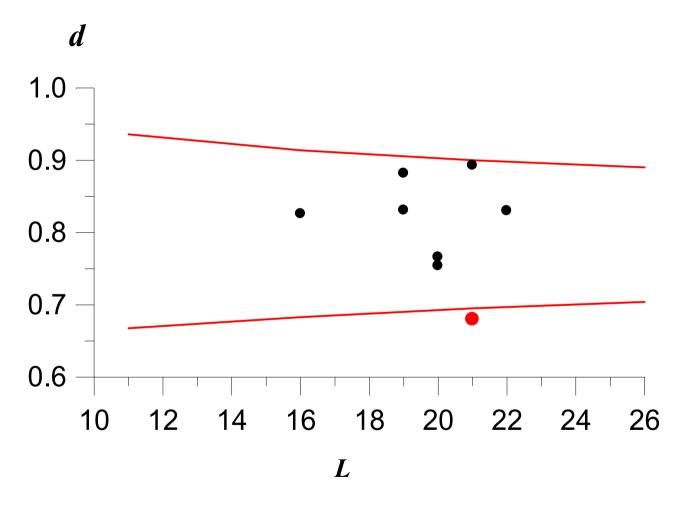

	Критерии	
Анализ на выбросы	Допустимые границы размаха	τS
Анализ на стохастическую зависимость от какого-либо фактора	Критическое число значений выше или ниже медианы и их смена	Знаков — <i>v</i> , серий — <i>т</i>
Проверка гипотезы о нор- мальном распределении	Критические значения пара- метра	d

2.1.1 Анализ выборок результатов измерений на выбросы $\omega(\mathrm{Si}(\mathrm{IV})),\,\%$

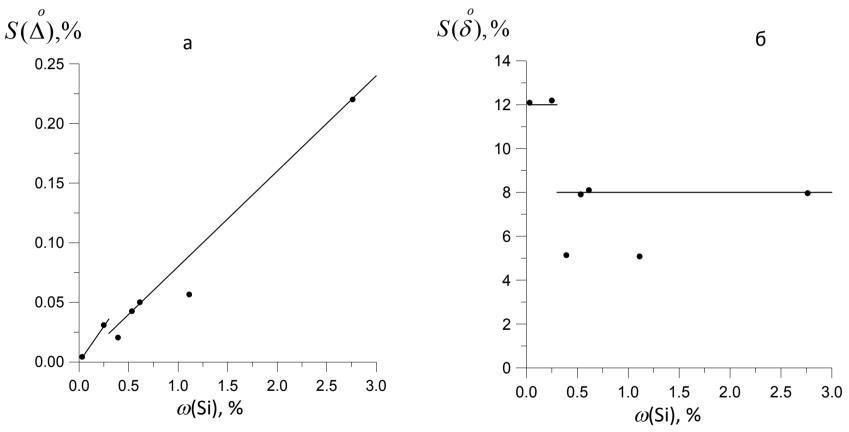



2.1.2 Анализ выборок результатов измерений на стохастическую зависимость от какого-либо фактора

 $\omega(Si(IV))$, %



2.1.3 Проверка гипотезы о нормальном распределении результатов измерений


Расчетные и критические значения критерия *d*

Расчетные и критические значения критерия *d*

Оценка показателей прецизионности, правильности и точности

2.2.1 Оценка характеристик прецизионности результатов измерений

Зависимость абсолютного (a) и относительного (б) значения стандартного отклонения от массовой доли кремния (IV) в растительных материалах

2.2.2 Оценка характеристик систематической составляющей погрешности результатов измерений

2.2.2.1 Погрешность аттестованного значения характеристики в СО

		Аттестованные	э характер	оистики
00	нд	Массовая доля кремния (IV)	•	шность 0.95)
		ω(Si), %	±∆, %	±δ, %
2 Стандартный образец со- става листа березы	ЛБ-1 ГСО 8923-2007	0,40	0,07	18
5 Стандартный образец со- става элодеи канадской	ЭК-1 ГСО 8921-2007	1,1	0,2	18

2.2.2. Оценка показателей правильности результатов анализа

$$\hat{\Delta} = \overline{x} - x_0$$

2.2.2.3 Погрешности средств измерений

$$\delta_{CU} = 1, 1 \sqrt{\sum_{i=1}^{I} \delta_i^2}$$

- 1 Погрешность измерения оптической плотности на фотометре
- 2 Погрешности используемых мерных колб
- 3 Погрешности дозаторов

Случайная срставляющая погрешности, перешедшая в статус систематической

- 1 Погрешность оценки коэффициента градуировочной функции
- 2 Погрешность, обусловленная измерением оптической плотности окрашенных растворов в условиях повторяемости

Систематическая составляющая погрешности

	Аттестация СО	Правильность	Средств измерений	Сумма (квадратичная)
	±δ ₀ , %	$\overset{{}_{}}{\mathcal{\delta}}$, %	± $\delta_{ extsf{C} extsf{ extit{ extsf{ extsf{C}}}}},\%$	±δ _c , %
3	18	-1,2	7	
4	7	-2,6	6	19
6	18	1,3	7	

3	-1,2	7	
4	-2,6	6	7
6	1,3	7	

2.3 Показатели прецизионности, правильности и точности измерений

Диапазон измерений массовых долей кремния (IV),	Показатель внутрилабо- раторной прецизион-	Показа- тель правиль- ности	Показатель точности (<i>P</i> = 0,95),
ω(Si), %	$\sigma_{R_{II}}$ δ 0	$\pm\delta_c$, %	$\pm \delta_{ extsf{ exitsf{ extsf{ extsf{ extsf{ extsf{ extsf{ extsf{ extsf{ exitsf{ extsf{ exitsf{ extsf{ exitsf{ extsf{ exitsf{ extsf{ exitsf{ extsf{ extsf{ extsf{ extsf{ extsf{ exitsf{ extsf{ exitsf{ exitsf{ extsf{ exitsf{ extsf{ exitsf{ extsf{ exitsf{ extsf{ exitsf{ extsf{ exitsf{ extsf{ extsf{ extsf{ extsf{ extsf{ exitsf{ exitsf{ extsf{ exitsf{ exitsf{ extsf{ exitsf{ exitsf{\exitsf{ exitsf{ exitsf{\etit}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
От 0,025 до 0,25			
включ.	12	19	30
От 0,25 до 4,0			
включ.	8	19	25

КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ В ПРЕДЕЛАХ ЛАБОРАТОРИИ

Цель: обеспечение необходимой точности результатов текущего анализа и экспериментальное подтверждение лабораторией своей технической компетентности.

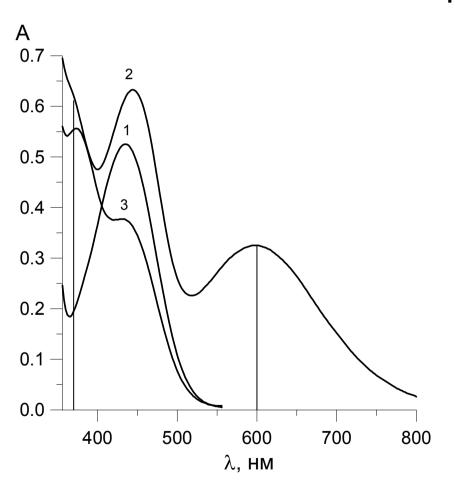
Внутренний контроль качества результатов анализа проводят при реализации методик с установленными нормативным документом по-казателями качества.

Внутренний контроль всех видов основан на реализации контрольных процедур оценок погрешности или ее составляющих, выполненных с применением образцов для контроля.

Образцы для контроля:

прецизионности – рабочие образцы;

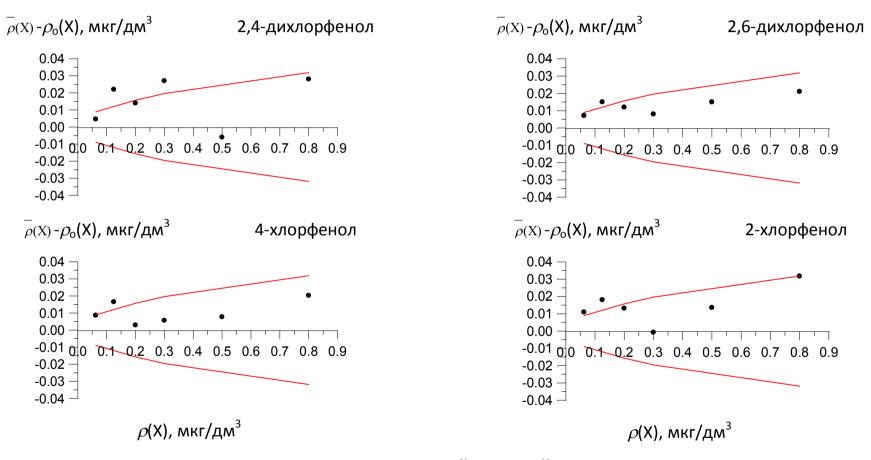
правильности и точности -


стандартные образцы или аттестованные смеси, рабочие образцы с известной добавкой определяемого компонента.

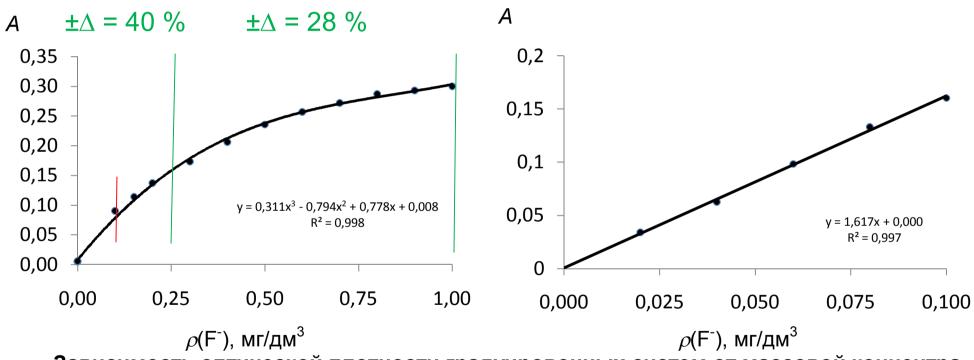
Примеры

Измерение содержание хлоридов в растительных материалах

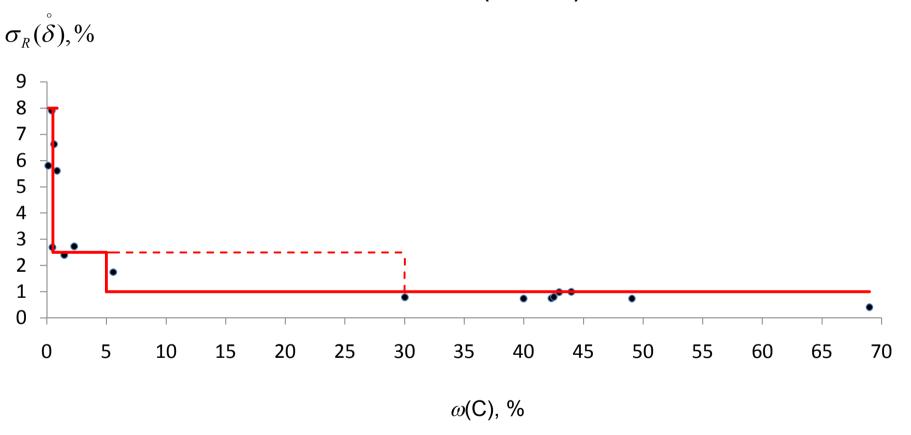
Результаты анализа стандартных образцов растительных материалов					
	на содержание хлорид-ионов				
$T_{np} = 250 \div 300 ^{\circ}\text{C}$				T_{np} = 550 °C, в присутствии NaOH	
Метрологические характеристики	PM1	РМ3	PM4	δ, % 50 – ,	
$\omega_{o}(\operatorname{Cl}^{\scriptscriptstyle{-}})$, ‰	8,4	0,69	1,11	40 -	
L	8	8	8	30 - 20 -	
<u></u> (Cl), ‰	6,9	0,35	0,88	10 —	
<i>W</i> (ω), %	20	11	27	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	
δ _c , %	-18	-50	-21	ω(Cl¯), %	
$\pm \delta(\omega)$, % (<i>P</i> = 0,95)	50	90	70	Зависимость относительного значения погрешно- сти измерения от массовой доли хлорид-ионов	


ИЗМЕРЕНИЕ МАССОВОЙ ДОЛИ ЖЕЛЕЗА (III) И АЛЮМИНИЯ (III), ИЗВЛЕКАЕМЫХ ИЗ ПОЧВЫ ЩАВЕЛЕВОКИСЛЫМ РАСТВОРОМ ОКСАЛАТА АММОНИЯ – ПО ТАММУ

Характеристикb погрешности, %: (<i>P</i> = 0.95)			
Компонент		Fe (III)	Al (III)
Показатель прецизионности	$\sigma_{\scriptscriptstyle R}(\overset{{}_\circ}{{\mathcal S}})$	10	40
Показатель правильности	$\delta_{ extsf{c}}$	10	30
Показатель точ- ности	±δ	22	80


Спектры поглощения водных растворов: феррона (1), ферроната железа (III) (2) и ферроната алюминия (III) (3) с избытком феррона при pH = 5.0

ИЗМЕРЕНИЕ ХЛОРФЕНОЛОВ И ФЕНОЛА В ПИТЬЕВЫХ, ПРИРОДНЫХ, ОЧИЩЕННЫХ СТОЧНЫХ ВОДАХ И АТМОСФЕРНЫХ ОСАДКАХ МЕТОДОМ ГАЗОВОЙ ХРОМАТОГРАФИИ


Зависимость разности опорного и измеренного значений массовой концентрации компонента от опорного значения

ПНД Ф 14.1:2.179-02 Методика выполнения измерений массовой концентрации фторид-ионов в водах фотометрическим методом

Зависимость оптической плотности градуировочных систем от массовой концентрации фторид-ионов погрешности

МЕТОДИКА ИЗМЕРЕНИЙ СОДЕРЖАНИЯ УГЛЕРОДА И АЗОТА В ТВЕРДЫХ ОБЪЕКТАХ МЕТОДОМ ГАЗОВОЙ ХРОМАТОГРАФИИ НА ЭЛЕМЕНТНОМ АНАЛИЗАТОРЕ EA 1110 (CHNS-O)

Зависимость показателя прецизионности от массовой доли углерода в твердых объектах

На аттестацию методик измерений представляют документы:

- 1 исходные данные на разработку методики измерений;
- 2 проект документа, регламентирующий методику измерений пропись методики;

3 программу и результат оценки показателей прецизионности, правильности и точности методики, включая материалы теоретических и экспериментальных исследований методики – отчет.

Пропись методики:

- 1 СВЕДЕНИЯ О РАЗРАБОТКЕ
- 2 СВЕДЕНИЯ ОБ АТТЕСТАЦИИ
- 3 СПИСОК ИСПОЛНИТЕЛЕЙ
- 4 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ МЕТОДИКИ
- **5** НОРМАТИВНЫЕ ССЫЛКИ

Учреждение - разработчик

Аккредитованная метрологическая служба

С указанием Института, отдела, должности

С указанием: объекта исследования, метода, определяемого компонента, диапазона измерений содержания определяемого компонента

ГОСТ - межгосударственный стандарт;

ГОСТ Р – национальный стандарт Российской Федерации;

ГСИ – государственная система измерений, государственная система обеспечения единства измерений;

ГСО – государственный стандартный образец;

МИ – методические инструкции;

РМГ – рекомендации по межгосударственной стандартизации;

НД – нормативные документы;

ТУ – технические условия;

МСО – межгосударственный стандартный образец стран СНГ;

ГСОРМ – государственный стандартный образец раствора металлов

6	ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕ- НИЯ И СОКРАЩЕНИЯ	
7	•	Численные значения показателей прецизионности, правильности и точности для установленных диапак-зонов содержания компонента
8	СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТ- РОЙСТВА, МАТЕРИАЛЫ, РЕ- АКТИВЫ	С указанием документов, в соответствии с которыми их выпускают, при отсутствии НД – с указанием производителя
9	МЕТОД ИЗМЕРЕНИЯ	Указывают физико-химический метод анализа, приводят краткое описание последовательности процессов, происходящих при анализе исследуемого объекта
1	О ТРЕБОВАНИЯ К УСЛОВИЯМ ИЗМЕРЕНИЙ	Температура, относительная влажность воздуха, атмо- сферное давление
1	1 ТРЕБОВАНИЯ БЕЗОПАСНО- СТИ	Указывают НД и класс опасности используемых реак- тивов
1	2 ТРЕБОВАНИЯ К КВАЛИФИ- КАЦИИ ОПЕРАТОРА	Высшее или средним профессиональное образование
1	В ПРИГОТОВЛЕНИЕ РАСТВО- РОВ	Подробное описание с указанием навесок веществ, вместимости мерной посуды, растворителей, условий приготовления

14	ГРАДУИРОВКА СРЕДСТВ ИЗМЕРЕНИЙ	Описание: выбора и приготовления градуировочных систем,
		процедур измерения интенсивности аналитического сигнала,
		уравнения градуировочной функции и метода оценки ее метрологических характеристик,
		процедур и оценки правильности, стабильности и вос- производимости градуировочной зависимости
15	АНАЛИЗ ОБЪЕКТА	Описание процедур при проведение анализа объекта
16	ВЫЧИСЛЕНИЕ РЕЗУЛЬТА-	Формулы расчета показателя содержания компонента
	тов измерений	в объекте с указанием названий физических величин и
47		приведением их единиц выражения
17	ОФОРМЛЕНИЕ РЕЗУЛЬТА- ТОВ ИЗМЕРЕНИЙ	Запись результата измерений с указанием показателя точности
18	КОНТРОЛЬ КАЧЕСТВА И	Описание процедур и критериев контроля качества и
	СТАБИЛЬНОСТИ РЕЗУЛЬТА-	стабильности результатов измерений
	ТОВ ИЗМЕРЕНИЙ	
19	ПРИЛОЖЕНИЕ А	Технические и метрологические характеристики основ-
		ных средств измерений