ИСПОЛЬЗОВАНИЕ СТРУКТУРНЫХ ХАРАКТЕРИСТИК ЗООБЕНТОСА ДЛЯ ОЦЕНКИ ЭКОЛОГИЧЕСКОГО СОСТОЯНИЯ МАЛЫХ РЕК В УСЛОВИЯХ ДОПОВРЕМЕННЫХ РУБОК (НА ПРИМЕРЕ БАССЕЙНА РЕКИ ВЫЧЕГИДЫ)

М.А. Батурина, О.А. Лоскутова, Е.К. Роговцова, Ю.С. Рафикова
Федеральное государственное бюджетное учреждение науки
Институт биологии Коми научного центра Уральского отделения РАН, Сыктывкар
E-mail: baturina@ib.komisc.ru

Аннотация. Получены сведения о зообентосе двух малых притоков р. Вычегды в условиях доповременных рубок. Показаны состав, количественные характеристики развития донных беспозвоночных по продольному профилю рек на различных биотопах. Дана оценка экологического состояния рек с применением методов биондикации, основанных на структурных и количественных показателях развития макробентоса.

Ключевые слова: малые реки, сведение лесов, зообентос, оценка качества вод

Введение
К настоящему времени более 25% лесной территории Республики Коми затронуто различными способами рубок. Исследования на территории Коми и других регионов севера России показали, что рубки леса оказывают существенное экологическое влияние на все компоненты таежных экосистем (Трансформации..., 1997; Дымов, 2012, 2014). Известно, что гидрологические процессы в малых речных бассейнах более зависят от характеристик лесного массива, чем средних и больших рек. Наилучее влияние рек на леса под водотоками проявляется в изменении стока, вызванного снижением аккумулирующей способности водосборов. Так, по данным ряд авторов (Марущин, 1986; Ткачев, 2002 и др.), на второй год после рубки леса годовой сток увеличивается на 40-60%. Его перераспределение вызывается в увеличении модуля стока весеннего половодья и осеннего паводка и приводит к снижению стока в период летней межени (Новоселов, 2014). Указанный ход изменений в зависимости от возраста леса, полученный экспериментально, подтверждается и данными математического моделирования (Копотова, 1986). Массированное сведение древостоя в поймах рек влияет не только на состояние лесов, почвенного покрова, но и служит основой причиной водной эрозии почвы, обусловливающей появление твердого стока на всех участках водосбора, где проводятся лесозаготовки (Ткачев, 2002). Следствие этого часто в местах концентрации вырубок наблюдается обмеление рек, связанное с избыточным поступлением наносов (Джуха, 1985). Осаждение твердых частиц грунта, измельченной древесины в русле приводит к массовому заполнению грунтов и снижению самоочищающей способности рек. Из-за обнажения площадей водосборов прежде всего меняются водный и температурный режимы рек. В итоге, под влиянием повышенной мутности воды за счет увеличения концентрации взвешенных минеральных частиц, накоплений отложений ила и гниющих древесных ос-
мулии загрязняющих веществ за длительный период (Шитиков, 2005). В настоящее время в мировой практике используют свыше 60 методов мониторинга, включающих различные характеристики зообентоса. Методики биоиндикации обладают значительным преимуществом по сравнению с химическими и физическими (Шитиков, 2005 и др.). Однако наличие такого большого числа методов свидетельствует о том, что универсальный, пригодный для всех случаев метода нет.

Цель нашей работы — оценить экологическое состояние двух малых притоков р. Вычегоды в условиях длительных рубок по составу и структуро- ре зообентоса, дать рекомендации по применению методов биоиндикации на изученных водотоках.

Материалы и методы

В июле-августе 2014 г. на реках Чернь Вычегодская и Лопью авторами совместно со специалистами Коми регионального некоммерческого фонда «Серебряная тайга» были проведены гидробио- логические исследования с целью оценки экологического состояния притоков р. Вычегоды, на водосборах которых активно ведется рубка леса.

Отбор и камеральную обработку проб зообенто- са проводили по стандартным методикам, приня- мым в Институте биологии Коми НЦ УрО РАН (Методика..., 1975; Шубина, 2006) и регламенти- рованным нормативными документами (ГОСТ 17. 13.07-82. Охрана природы. Гидросфера. Прави- ла контроля качества воды водоемов и водотоков). На реках пробы отбирали по створам (табл. 1), расположенным от верховьев к устью рек. При отборе с поверхности грунта использовали гидробиологический скребок с мешком из газа № 43 (площадь отбора 30х30 см²). Одновременно со сбором бентоса осуществляли замер глубин, температуры воды, скорости течения, прозрачности воды, отмечали характер грунта, наличие обрастан- ний и водной растительности.

Для оценки экологического состояния исследованных водотоков рассчитывали индексы, применяемые в биологической оценке качества вод (Семенченко, 2004; Шитиков, 2005; Особенности..., 2011 и др.):

1. Биотический индекс Вудивисса (ТВИ), индекс ЕВИ, индекс рабочей группы биологического мониторинга (BMNW) и индекс средних значений таксонов ASPT. При загрязнении величины значений снижаются.
2. Метрики, основанные на соотношении численностей различных таксонов макрозообентоса: Dip/N; Ch/N, где Dip — численность личинок двух- крылых, Ch — личинок хирономид; N — общая численность зообентоса на створах рек. При за- грязнении величины метрик увеличиваются.
3. Индекс Пудел Д1: соотношение численности олигохет к общей численности бентоса. Метрики, используемые для индикации: 0.01-0.16 — очень чистая вода; 0.17-0.33 — чистая; 0.34-0.50 — слабозагрязненная; 0.51-0.67 — загрязненная; 0.68-0.84 — грязная; 0.85-1.0 — очень грязная.

Результаты

Характеристика исследованных водотоков.

Исследованные водотоки являются притоками р. Вычегоды в верхнем течении. Согласно физио-географическому ландшафтному районированию, оба расположены в подзоне средней тайги Тиманской среднетаежной провинции (Атлас..., 1964). Река Чернь Вычегодская, правобережный приток, впадает в р. Вычегоду на 963 км от устья. Длина реки 113 км. Верхняя (85 км от устья, створы I, II) и средняя (59 км от устья, створ III) части характеризовались песчано-галечными грунтами, иногда с водорослевым налетом и наливом (табл. 1). На нижней точке (стор IV), расположенной в 19 км от устья, типичным был глинистый грунт с примесью песка и гравия. Общая площадь бассейна реки составляет 848.9 км², площадь бассейна — 127.8 км², или 15.05%. Река Лопью, левобережный приток, впадает в р. Вычегоду на 796 км от устья. Общая протяженность водотока — 131 км. На верхнем и среднем участ- ках (сторы I-III) река характери- зуется песчаными грунтами с детритными отложениями (табл. 1), местами встречаются валунно-галечные грунты, на нижнем участке (менее 20 км от устья, створ IV) грунты в основном песчано- или гравийно-галечные с отложениями детрита или мощным слоем наилечка. Общая площадь бассейна — 1258.4 км², при этом площадь вы- рубок составляет 516.27 км², или 41.03%.

Согласно классификации, предс- тавленной в работе В.Г. Марть-
нова (1997), р. Чернь Вычегодская попадает в категорию рек, испытывающих слабое воздействие (S вырубок < 30%), а р. Лопья – в категорию рек, испытывающих среднее воздействие (S вырубок 30-60%).

Характеристика zoобентоса. Всего в руслах исследованных рек отмечено 23 таксономические группы данных беспозвоночных (табл. 2): в р. Лопью – 22, р. Чернь Вычегодская – 20. Высокой частотностью в исследуемой территории характеризуется личинки хирономид (Chironomidae) и прочих амфиподитических насекомых, моллюски (Mollusca), бентосные ракообразные (Cladocera, Cyclopoida, Ost-yracoda), личинки жуков (Coleoptera), червя (Nematoda и Oligochaeta). Паукообразные (Araneae), гидры (Hydra), личинки москей (Simuliiidae) и тардиграды (Tardigrada) относились в период исследований к редко встречающимся группам.

Количественные показатели развития zoобентоса в реках Чернь Вычегодская и Лопья колебались – средняя численность от 6.0 ± 2.5 до 8.8 ± 4.6 тыс. экз./м² и средняя биомасса от 1.5 ± 0.6 до 2.3 ± 0.7 г/м². По численности в бентосе обожженных водотоков преобладали личинки Chironomidae (от 33.0% общего бентоса), а в р. Чернь Вычегодская также личинки Simuliiidae. На долю низших ракообразных (Cladocera, Copepoda, Ostracoda) приходилось от 20.0 до 43.0% общей численности. В обшей биомассе бентоса превалировали личинки амфициотических насекомых, преимущественно Trichoptera, Ephemeroptera и Chironomidae (в сумме более 30%), других Diptera, близко не определенных (до 50.7%), Мollusca (до 26.0%) и Oligochaeta (до 32.0%).

Разнообразие условий по продольному профилю рек, определяемое как естественными факторами, так и антропогенным влиянием, объясняет разнообразное распределение zoобентоса на разных участках и различия в составе групп. При этом, если в целом по рекам показатели количественного развиия бентоса были сходны, то в различных групп вдоль русла наблюдали различия. Так, в р. Чернь Вычегодская показатели численности и биомассы снизились по по правлению от верхнего участка к устью реки. На I и II срезах на валуно-галечных грунтах как по численности, так и по биомассе доминировали преимущественно личинки двукрылых с преобладанием личинок Simuliiidae и Chironomidae (табл. 3). На песчаных грунтах с отложениями детрита и развитием водных макрофитов на срезах III и IV в массе развивались низшие ракообразные (при превалировании Cyclopidae), при этом основу биомассы составляли Mollusca (88.6% общей). На близком до устья участке IV на песчаных грунтах с наликом и местами с отложениями глины, с замедленным течением основу численности также составляли мелкие ракообразные (преобладали Ostracoda), а в биомассе доминировали личинки...
Таблица 3

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Верхний участок</th>
<th>Средний участок</th>
<th>Нижний участок</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N, тыс. экз./м²</td>
<td>N, тыс. экз./м²</td>
<td>N, тыс. экз./м²</td>
</tr>
<tr>
<td>Доминирующие группы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae, lv</td>
<td>34.3%</td>
<td>41.1%</td>
<td>37.0%</td>
</tr>
<tr>
<td>Simuliidae, lv3</td>
<td>18.3%</td>
<td>15.2%</td>
<td>23.5%</td>
</tr>
<tr>
<td>N, тыс. экз./м²</td>
<td>12.1</td>
<td>2.2</td>
<td>7.5</td>
</tr>
<tr>
<td>B, г/м²</td>
<td>1.9</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Доминирующие группы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladocera</td>
<td>32.2%</td>
<td>30.3%</td>
<td>14.8%</td>
</tr>
<tr>
<td>Copepoda</td>
<td>43.0%</td>
<td>42.1%</td>
<td>34.7%</td>
</tr>
<tr>
<td>N, тыс. экз./м²</td>
<td>1.9</td>
<td>2.6</td>
<td>12.1</td>
</tr>
<tr>
<td>B, г/м²</td>
<td>1.1</td>
<td>5.3</td>
<td>27.0%</td>
</tr>
</tbody>
</table>

Количественные показатели развития (средняя численность (N), средняя биомасса (B) бентоса и состав доминирующих групп в исследованных водотоках.

Река Чернь Вычегодская, июль 2015 г.

Река Лопья, июль 2015 г.

ки Chironomidae и Ephemeroptera. В целом доля амфибионтов ненасыщенных в численности и биомассе бентоса в нижних участках снижается за счет отсутствия здесь личинок мокш, что связано, вероятно, с изменениями типов биотопов. Сравнение полученных данных с результатами более ранних наблюдений (Шубина, 2006), отмечается большое современное разнообразие таксономических групп донных беспозвоночных (22 против 12), но меньше количественных показателей развития бентоса. Ранее на перекатах, валунных грунтах с моховыми обрастаниями плотность населения колебалась в пределах 4.4-83.9 тыс. экз./м² (в среднем 19.9), биомасса - 0.7-15.7 г/м² (в среднем 7.3). На плесовых участках русла эти показатели были несколько ниже. Так, на песчано-галечных грунтах в прибрежье и на стрежневой численности бентоса варьировала от 2.9 до 5.4 тыс. экз./м² (до минимума личинок хирономид, реже олигохет), а биомасса была минимальной - 0.3 г/м².

В р. Лопью, напротив, наибольшие показатели численности (12.1 тыс. экз./м²) отмечали ближе к устью реки (табл. 3), а наименьшие (1.9 тыс. экз./м²) - в верхнем участке (табл. 1, II). При движении к устью почти в два раза уменьшился состав групп: с 20-22 до 12 таксонов. При этом по численности на всех точках доминировали личинки Chironomidae, на верхнем и среднем к числу доминантов относились также низшие ракообразные, преимущественно Cladocera и Cyclopoidea, а в нижнем участке - Ostracoda. Наибольшую биомассу бентоса также отмечали ближе к устью (табл. 3). При этом в общей массе бентоса на нижнем и среднем участке преобладали личинки Chironomidae и Trichoptera, Mollusca, Oligochaeta, в верхних тростниках - Mollusca и личинки Ephemeroptera. Доля некрофиловидных ненасиметричных в численности и биомассе бентоса в устьевой зоне была в 5-10 раз ниже, чем в верхних исследованных участках реки.

Оценка экологического состояния водотоков методами биодиагностики с использованием показателей развития зообентоса. Согласно ГОСТ 17.1.3.07-82, для оценки качества воды в водоемах по характеристикам зообентоса рекомендуется использовать биотический индекс Вудивисса и отношение общей численности олигохет к общей численности донных организмов (индекс Гуднайта и Уитлера). Согласно расчетам величины этих индексов (табл. 4), оба водотока относятся ко II-III классам качества вод - категории «чистая».

Использование индекса BMWP (балльная оценка подсемейства донных беспозвоночных) показа-
ло, что его значения на створах со «слабым» воз-
действием располагаются в зоне между 51 и 100 баллами, что соответствует «хорошему» качеству вод. Индекс ASPT (индекс средних значений таксона) также оценивает качество вод на этих ство-
рах как «хорошее». Оба этих индекса понижают свои значения на участках рек с возрастающей антропогенной нагрузкой, в нашем случае – при увеличении площади вырубок.

На основе рассчитанных значений показате-
лей TBI и EBI оба водотока на всех участках можно оценить как олигосапробные с хорошим каче-
ством воды.

Значения индекса D1 на всех створах не пре-
вышали 0.3, что позволяет оценить воду на боль-
шой части створов как «чистую». Однако, значе-
ния индекса возрастили от участков со «слабым» воспользованием к участкам, где степень воздействия выше. Это связано с увеличением численности олигохет в бентосе и указывает на наличие нега-
тивного влияния, возможно связанного с рубка-
ми леса.

При применении различных метрик также были получены следующие результаты: показа-
тели соотношений Dip/N, Ch/N в створах возра-
стали от верхних точек с меньшими площадями вырубок к устью, где площадь вырубок увеличи-
вается. Это указывает на наличие структурных перестроек в бентосном сообществе. Метрики очень близки по значениям и динамике по точкам и продольному профилю рек. На наш взгляд, это связано, вероятнее всего, с тем, что в группе двукрылых насекомых личинки хирономид явля-
ются превалирующей группой даже на незагрязнен-
ных участках. Такое доминирование характер-
но для рек Вычегодского бассейна в целом (Шуби-
на, 2006; Лоскутова, 2016).

Большинство примененных нами индексов дали сходную оценку качества вод в исследован-
ных реках. Была рассчитана корреляционная матрица для оценки связи между индексами (табл. 5).

Достоверно максимальные коэффициенты кор-
реляции были получены для следующих комби-
наций индексов: Dip/N–Ch/N (0.81); Dip/N–
ASPT (0.80); BMWP1–ASPT (0.98). На основе проведенного анализа эти индексы можно счи-
тать наиболее пригодными для оценки качества вод в данном бассейне.

Обсуждение результатов

Все отмеченные в исследованных реках так-
сомические группы донных беспозвоночных широко распространены в основном русле р. Вы-

Значения рассчитанных индексов и показателей в исследованных реках на участках со слабым (I) и сред-
ним (II) воздействием. — линия тренда.
чегда и ее малых притоках (Зверева, 1969; Шубина, 2006; Кононова, 2008 и др.). Преобладание в зообентосе личинок амфибиотических насеко-

ных, особенно представителей Diptera, Ephemeroptera и Trichoptera, обычно для рек среднетаежной зоны (Лоскутова, 2016). Доля амфибиотических

ных некоринидных насекомых в бентосе обеих рек достаточно высока и составляет от 10.4 до 35.5% общей численности бентоса и от 21.2 до 40.1% общей биомассы. При этом доля личинок насекомых в р. Чернь Вычегодская выше по сравне-

нию с р. Лопью. Анализ состояния и количествен-

ных характеристик зообентоса не показал различи-

й между двумя водотоками, однако распреде-

ление бентоса по продольному профилю рек за-

метно отличалось. В р. Лопью на участках с боль-

шими площадями вырубок на водосборе умень-

шалось число систематических групп бентоса и возрастали, по сравнению с другими участками, его количественные характеристики. Как известно (Денимухаметов, 2011 и др.), реки наиболее чутко реагируют на техногенное воздействие, проявляющееся в загрязнении вод от стоков про-

мышленных объектов, населенных пунктов, при нарушении почвенно-растительных и гидрогео-

логических условий и т.п. В бассейнах рек, где была проведена рубка леса, резко увеличивается сток растворенных веществ, тогда как на kontrol-

ных водосборах, находящихся в сходных условиях, но с естественным лесным покровом, сток не изменяется (Филиппова, 2014). Сведение древостоя в результате рубок и пожаров ухудшает физико-химические свойства почвенного по-

кра, поверхностного стока и гидрологического режима водотоков, приводит к аномальной дина-

мике темперального режима рек, их химического-

ного состава за счет увеличения концентрации вве-

шенных минеральных частиц и, в конечном сче-

те, заиливанию иерестовых участков рек и сниже-

нию рыбных запасов (Спиловкине, 1999). A учи-

тывая тенденцию уменьшения водности водото-

ков, протекающих в зонах активной разработки леса, можно прогнозировать постепенное возвра-

тание в них значений плотности популяций пре-

сноводных лимнотипических форм при параллель-

ном снижении величин плотности популяций наиболее реофильных таксонов. В нижних участках р. Лоп-

ью отмечена максимальная площ.

ность вырубок. Вероятно, увеличение количественных показателей развития бентоса в направлении от верхнего участка к устью при снижении числа групп, уменьшение численности и биомассы некорини-

дных групп амфибиотических насекомых объясняется различиями гидрологического режима и ха-

рактеристик отдельных участков,

Table 5

<table>
<thead>
<tr>
<th>Dip/N</th>
<th>Ch/N</th>
<th>D1</th>
<th>BMWP</th>
<th>ASPT</th>
<th>TBI</th>
<th>EBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>0.81</td>
<td>0.25</td>
<td>-0.35</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>1.00</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Примечание: жирным шрифтом выделены достоверные значения при р<0.05.

В целом в обоих исследованных водотоках каче-

ство воды остается достаточно стабильным. Оценка экологического состояния рек с исполь-

зованием различных индексов и показателей по-

зволяет отнести большинство обследованных уча-

стков к зоне относительного экологического благополучия. Однако на тех створах, где про-

цент вырубленных площадей лесов на водосбо-

рах меньше (около 10%), индексы оценивают каче-

ство воды равномерно, а там, где площадь вырубок увеличивается, все показатели хотя и

оказывают на благополучное состояние малых

рек, но менее стабильно. К наиболее чувстви-

тельным индексам по результатам анализа мы относим индекс BMWP и ASPT. В ряде работ (Семенченко, 2004; Особенности..., 2011; Pinder, 1987) они также указаны как лучшие в системе биоиндикации. Корреляция этих индексов ме-

ду собой и с метриками Dip/N и Ch/N показывает

их согласованную реакцию, что подтверждает

возможность их совместного использования.

Заключение

Количественные характеристики зообентоса в исследованных малых притоках в целом укла-

дываются в пределы колебаний их значений, от-

мечаемых для водотоков бассейна Вычегоды. В обе-

их реках в общем бентосе доминировали по чис-

ленности личинки амфибиотических насеко-

мых, на песчаных грунтах к ним добавлялись ра-

кобраяные, а в биомассе наравне с насекомы-

ми значительную была роль моллюсков и местами

червей.

Проведенное исследование носит рекогносци-

ровочный характер и в будущем может быть на-

целено на долгосрочный мониторинг экосистем

малых притоков р. Вычегоды, в бассейнах кото-

рых проводят рубки леса. Локально на отдель-

ных участках по составу донных сообществ, ко-

личественным показателям развития и расчету

ряда индексов состояние малых притоков Вы-

чегоды можно оценить как благополучное. Одна-

ко наблюдаемые местами резкие изменения в
структуре доминирующих групп бентоса и количественных показателях его развития на биотопах, близко расположенных друг от друга, указывают на существующие нарушения донных биоценозов.

Работа выполнена при частичной поддержке Коми регионального некоммерческого фонда «Се-ребряная тайга» в рамках проекта «Оценка долговременного воздействия лесозаготовок на водные ресурсы» и гранта Комплексной программы Уральского отделения РАН № 15-12-4.43.

ЛИТЕРАТУРА

Безматерных, Д. М. Зообентос как индикатор экологического состояния водных экосистем Западной Сибири : аналитический обзор / Д. М. Безматерных ; Государственная публичная научно-техническая библиотека СО РАН. Институт водных и экологических проблем. – Новосибирск, 2007. – 87 с. – (Серия «Экология» ; вып. 85).

Зверева, О. С. Особенности биологии главных рек Коми АССР в связи с историей их формирования / О. С. Зверева; отв. ред.: Л. Н. Соловкина, Л. А. Братцев, Е. С. Кукина. – Ленинград : Наука, 1969. – 279 с.

Самохвалов, В. Л. Влияние гидрологического режима на зообентос горных и предгорных водоемов (руч. Контактовый, Верхняя Кольма); автореф. дис. канд. бiol. наук ; защитена 08.05.1992 / В. Л. Самохвалов. – Москва : Изд-во МГУ, 1992. – 24 с.

USING ZOOBENTHOS STRUCTURAL CHARACTERISTICS TO ASSESS SMALL RIVERS ECOCLOGICAL STATE IN CONDITIONS OF LONG-TERM CUTTINGS (ON THE EXAMPLE OF THE VYCHEGDA RIVER BASIN)

M.A. Baturina, O.A. Loskutova, E.K. Rogovcova, Yu.S. Rafikova

Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar

Summary. More than a quarter of forest area of The Republic of Komi is affected by various methods of cutting. Massive reduction of stand leads to changes in river flows, their shallowing, disruption of water and temperature regimes, restructuring of bottom biocenoses. The most noticeable impact of logging is shown on the catchment areas of the small rivers. The aim of this study was to evaluate the ecological status of two small Vychegda tributaries under long-term cuttings using zoobenthos composition and structure and to develop recommendations on application of bioindication methods in the studied streams. In order to assess the ecological status, indexes commonly used in the biological assessment of water quality were calculated. Analysis of zoobenthos composition and quantitative characteristics showed no differences between two studied streams with different logging area. However, distribution of benthic communities along the longitudinal profile of the rivers was noticeably different. Number of taxonomic groups of benthos decreased in areas with wide logging in the river catchment area, but quantitative characteristics of benthos increased in comparison with the other sites. Assessment of the ecological status of rivers using bioindication methods allowed to classified studied small Vychegda tributaries as safe. However, sharp changes in the structure of dominant benthos groups and quantitative indexes of its development at close habitats indicate existing damages of bottom biocenoses. Performed study has shown that the most sensitive indexes are BMWP and ASPT.

Key words: zoobenthos, small rivers, long-term cuttings, assessment of water quality
Введение
Республика Коми представляет собой уникальный регион для реализации программ изучения, сохранения и восстановления биоразнообразия. В регионе имеется положительный опыт в сфере создания, управления и инвентаризации особо охраняемых природных территорий (ООПТ). Решаются проблемы, связанные с устойчивым функционализмом системы особо охраняемых объектов; принята концепция развития сети ООПТ в Республике Коми с учетом экологических, социальных и экономических особенностей региона.

С 2000 г. началась планомерная инвентаризация объектов природно-заповедного фонда с целью наиболее полного выявления их биологического разнообразия на видовом и экосистемном уровнях. Функционирование резерватов для сохранения и поддержания биоразнообразия в условиях уязвимых северных экосистем особенно актуально в современной экологической обстановке. На сегодняшний день природно-заповедный фонд Республики насчитывает 239 объектов общей площадью 5,4 млн. га (13% от площади республики), два из которых имеют статус ООПТ федерального значения – Печоро-Ильческий государственный природный биосферный заповедник и национальный парк «Югыд ва» и являются объектом Всемирного наследия ЮНЕСКО «Девственные леса Коми» (Кадастр..., 2014; Дёгтева, 2015).

Национальный парк — это хороший модельный объект для проведения исследований, мониторинга и охраны местообитаний редких видов животных. Жуки являются важнейшим компонентом биогеоценозов, многие из них чутко реагируют на изменения условий, поэтому их часто применяют в качестве биоиндикаторов состояния окружающей среды. Это немаловажно для территории парка, которая до настоящего времени испытывает не только рекреационную нагрузку, но и антропогенное влияние после добычи полезных ископаемых.

Цель данной работы — определить современное состояние колеоптерофауны (выявить видовой состав и оценить обилие видов) на территории национального парка как крупнейшего природного резервата европейского Севера.

Первые сведения о жесткокрылых исследуемого района содержат списки жуков Припеченского края (Sahlberg, 1898; Poppius, 1905; Жуковский, 1906, 1909, 1910), позднее эти данные были обобщены в монографиях «Производительные силы Коми АССР» (1953) и «Животный мир Коми АССР» (Седых, 1974). В последние десятилетия изучению эктомокомплексов в национальном парке уделяется все большее внимание (Медведев, 2001, 2005; Уханкина, 2007; Бассейн..., 2007; Биоразнообразие водных..., 2010). Однако и в обобщающей монографии по особо охраняемым территориям Республики Коми (Кадастр..., 2014) какие-либо данные о жуках национального парка отсутствуют. Приведенный ниже список из 352 выявленных видов не может считаться исчерпывающим и адекватно отражающим все разнообразие фауны жесткокрылых национального парка. При более детальных и планомерных исследованиях он должен существенно увеличиться.

Важность проведения целенаправленной инвентаризационной работы на ООПТ неоспорима по причине того, что регистрировать изменения и отслеживать динамику природных экосистем возможно только при наличии информации об их компонентах.

Район исследования. Материалы и методы
Национальный парк «Югыд ва creation in 1990 g., в 1994 г. получил статус российского. Резерват располагается на северо-востоке Республики Коми и является крупнейшим в России и Европе, его площадь составляет более 18 тыс. км² (Кадастр..., 2014). На юге парк примыкает к Печоро-Ильческому заповеднику, его западная граница проле-